

Northern University, Nowshera

Spring 2024

Passing & returning objects

from methods
Week # 07 - Lecture 13- 14

AJ/Handout 13- 14 Object Oriented Programming using Java (ECS-122)

2

Learning Objectives:

1. More with methods

2. returning values from methods

3. Passing objects to methods

4. returning objects from methods

5. Accessing private instance variables (outside the class)

1. More with methods

In Java Class, We can add user defined method which is equivalent to Functions in C/C++

Programming.

Syntax: Methods in Java Classes
return_type method_name (arg1 , arg2 , arg3)

return_type: is nothing but the value to be returned to a calling method.

method_name: is a name of method that we are going to call through any method.

AJ/Handout 13- 14 Object Oriented Programming using Java (ECS-122)

3

arg1, arg2, arg3: are the different parameters that we are going to pass to a method.

Return Type of Method:
Method can return any type of value

Method can return any Primitive data type

 int sum (int num1,unt num2);

Method can return Object of Class Type

Rectangle sum (int num1,unt num2);

Method sometimes may not return value

void sum (int num1,unt num2);

Method Name:
Method name must be valid identifier.

All Variable naming rules are applicable for writing Method Name.

Parameter List:
 Method can accept any number of parameters.

 Method can accept any data type as parameter.

 Method can accept Object as Parameter

 Method can accept no Parameter.

 Parameters are separated by Comma.

 Parameter must have Data Type

Example: Simple Method in Java Class

class Rectangle {

 private double length;

 private double breadth;

 public void setLength(int len)

 {

 length = len;

 }

AJ/Handout 13- 14 Object Oriented Programming using Java (ECS-122)

4

 public void show()

 {

 System.out.println(length + " ,\t" + width);

 }

}

class RectangleDemo {

 public static void main(String args[]) {

 Rectangle r1 = new Rectangle();

 System.out.println("Before Function Length : " + r1.show());

 r1.setLength(20);

 System.out.println("After Function Length : " + r1.show());

 }

}

Output:

Before Function Length : 0.0 , 0.0

After Function Length : 20.0 , 0.0

Explanation: Calling a Method:
“r1” is an Object of Type Rectangle.

We are calling method “setLength()” by writing:

Object_Name [DOT] Method_Name (Parameter List) ;

Function call is always followed by Semicolon.

Method Definition:
Method Definition contains the actual body of the method.

Method can take parameters and can return a value.

AJ/Handout 13- 14 Object Oriented Programming using Java (ECS-122)

5

2. Returning values from method

1. We can specify return type of the method as “Primitive Data Type” or “Class name”.

2. Return Type can be “Void” means it does not return any value.

3. Method can return a value by using “return” keyword.

4. Methods returning primitive data types can be called directly in sout.

5. we need a variable of same data type to store returned value

Example: Returning Value from the Method

class Rectangle {

 private int length;

 private int breadth;

 public void setLength(int len)

 {

 length = len;

 }

 public int getLength()

 {

http://img.c4learn.com/2012/03/Calling-Methods-in-Java-Programming-Class-Concept.png

AJ/Handout 13- 14 Object Oriented Programming using Java (ECS-122)

6

 return length;

 }

}

class RectangleDemo {

 public static void main(String args[]) {

 Rectangle r1 = new Rectangle();

 r1.setLength(20);

 int len = r1.getLength();

 System.out.println("Length of Rectangle : " + len);

 System.out.println("Method called in System.out.println : " + r1.getLength());

 }

}

Output :

Length of Rectangle : 20

Method called in System.out.println : 20

There are two important things to understand about returning values:

AJ/Handout 13- 14 Object Oriented Programming using Java (ECS-122)

7

1. The type of data returned by a method must be compatible with the return type

specified by the method. For example, if the return type of some method is boolean, you

could not return an integer.

boolean getLength()

 {

 int length = 10;

 return(length);

 }

2. The variable receiving the value returned by a method (such as len, in this case)

must also be compatible with the return type specified for the method.

public int getLength()

 {

 return length;

 }

boolean len = r1.getLength();

3. Parameters should be passed in sequence and they must be accepted by method in

the same sequence.

public void setParameters(String str,int len)

 {

 }

 r1.setParameters(12,"Pritesh");

public void setParameters(int length,String str)

 {

AJ/Handout 13- 14 Object Oriented Programming using Java (ECS-122)

8

 }

 r1.setParameters(12,"Pritesh");

3. Passing objects as parameter

Objects of same class can be passed as parameters to methods that can help to process

multiple objects of same class. For example: to compare the length of two objects of rectangle

class say r1 and r2, we need a method “compareLength(rectangle obj)” where obj is a reference

of parameterized object. Private instance variables of parameterized object can accessed

directly within function using dot operator (of same class).

1. We can pass Object of any class as parameter to a method in java.

2. We can also access private instance variables of the parameterized objects.

area = r1.length * r1.width //Here r1 is reference of class object

3. It is good practice to initialize instance variables of an object before passing object as

parameter to method otherwise it will take default initial values.

 Example: Comparing the length of two rectangle class objects

package BIIT;

class Rectangle {

 private int length;

 private int width;

 public void setRectangle (int l, int b) {

 length = l;

 width = b;

 }

 void compare(Rectangle obj) {

 if(length > obj.length)

 {

 System.out.println("r1 has greater length: ");

 }

AJ/Handout 13- 14 Object Oriented Programming using Java (ECS-122)

9

 else

 System.out.println("r2 has greater length ");

 }

}

class RectangleDemo {

 public static void main(String args[]) {

 Rectangle r1 = new Rectangle();

 r1.setRectangle(10, 20);

 Rectangle r2 = new Rectangle();

 r2.setRectangle(12, 17);

 r1.compare(r2);

 }

}

 Output:

r2 has greater length:

4. Returning objects from methods:

Example 5.1: Add two objects - without returning object

public class Rectangle {

 private int length;

 private int width;

 public void setRectangle (int l, int b) {

 length = l;

 width = b;

 }

 void addRect(Rectangle obj) {

 Rectangle sum=new Rectangle();

 sum.length=length+obj.length;

 sum.width=width+obj.width;

 System.out.println("Sum of r1 and r2 is : " +sum.length+" "+sum.width);

 //consider this call that is more better than above line of code

 // sum.showRect();

AJ/Handout 13- 14 Object Oriented Programming using Java (ECS-122)

10

 }

 public void showRect()

 {

 System.out.println(length+" , "+width);

 }

 }

 class RectangleDemo {

 public static void main(String args[]) {

 Rectangle r1 = new Rectangle();

 r1.setRectangle(8, 12);

 System.out.println("r1 = ");

 r1.showRect();

 Rectangle r2 = new Rectangle();

 r2.setRectangle(12, 17);

 System.out.println("r2 = ");

 r2.showRect();

 r1.addRect(r2); //will add objects r1, r2

 }

 }

Output:

r1 = 8 12

r2 = 12 17

Sum of r1 and r2 is : 20 29

In the above example we cannot add three objects with addRect()

mehod. For this we need to modify function definition of addRect()

like this:

void addRect(Rectangle obj1, Rectangle obj2)

{-----------------------------}

The following example is a generic way to add more than two objects.

Example 5.2: : Add two objects - with return object

class Rectangle {

AJ/Handout 13- 14 Object Oriented Programming using Java (ECS-122)

11

 private int length;

 private int width;

 public void setRectangle (int l, int b) {

 length = l;

 width = b;

 }

 public Rectangle addRect(Rectangle obj) {

 Rectangle sum=new Rectangle();

 sum.length=length+obj.length;

 sum.width=width+obj.width;

 return sum;

 }

 public void showRect()

 {

 System.out.println(length+" , "+width);

 }

 }

 class RectangleDemo {

 public static void main(String args[]) {

 Rectangle r1 = new Rectangle();

 r1.setRectangle(8, 12);

 System.out.print("r1 = ");

 r1.showRect();

 Rectangle r2 = new Rectangle();

 r2.setRectangle(12, 17);

 System.out.print("r2 = ");

 r2.showRect();

 Rectangle result=new Rectangle();

 result=r1.addRect(r2);

 System.out.print("Sum of r1 and r2 is :");

 result.showRect();

 Rectangle r3 = new Rectangle();

AJ/Handout 13- 14 Object Oriented Programming using Java (ECS-122)

12

 r3.setRectangle(15, 14);

 System.out.print("r3 = ");

 r3.showRect();

 result=result.addRect(r3);

 System.out.print("Sum of r1 and r2 and r3 is :");

 result.showRect();

 }

 }

Output:

r1 = 8 12

r2 = 12 17

Sum of r1 and r2 is :20 29

r3 = 15 14

Sum of r1 r2 and r3 is : 35 43

5. Accessing private instance variables outside the class

As we have already discussed that private attributes can only be accessed within class not

outside the class. What if, we required these private properties outside the class?

The solution is: we will return these values through functions. The above example can also

be solved by returning private attributes. For this, we need an additional method that will send

private property where it is being called. The following example demonstrates the concept.

Example: returning private attributes

class Rectangle {

 private int length;
 private int width;
 public void setRectangle (int l, int b) {
 length = l;
 width = b;

 }

 public void show()

 {

AJ/Handout 13- 14 Object Oriented Programming using Java (ECS-122)

13

 System.out.println(length + "\t" + width);

 }

 public int returnLength () {

 return length;

}

class RectangleDemo {

 public static void main(String args[]) {

 Rectangle r1 = new Rectangle();

 r1.setRectangle(10, 20);

 Rectangle r2 = new Rectangle();

 r2.setRectangle(12, 17);

 System.out.println("Rectangle with greater length is : \n ");

 // if (r1.length > r2. length) not possible because length is private so we

 need a method

 if(r1.returnLength() > r2. returnLength())

 r1.show();

 else

 r2.show();

 }}

 Output:

Rectangle with greater length is : 12 17

Note: We cannot access length attribute with dot operator because of private access

modifier. As you can see that length property is now available in main() for comparison.

Assignment #6

READ THE FOLLOWING INSTRUCTIONS CAREFULLY:

1. Attempt the Assignment after reading the lecture notes, watching the videos lectures

and doing self-learning of the topic from web.

2. Submit your assignment via email /Google class room to respective teacher by the end

of this week, dated 12 April 2020 before : 11:59 PM

3. Your Assignment should be a single file either pdf or MS Word (handwritten scanned

document) and must follow the naming format, your Name, Reg#, Section, subject

and assignment number, i.e. AliAhmed_2018-Arid-0001-CS2A_OOP_Asgn4

AJ/Handout 13- 14 Object Oriented Programming using Java (ECS-122)

14

File: TestAccount.java

1. //Java Program to demonstrate the working of a banking-system

2. //where we deposit and withdraw amount from our account.

3. //Creating an Account class which has deposit() and withdraw() methods

4. class Account{

5. private int acc_no;

6. private String name;

7. private float amount;

8. //Method to initialize object

9. public void insert(int a,String n,float amt){

10. acc_no=a;

11. name=n;

12. amount=amt;

13. }

14. //deposit method

15. public void deposit(float amt){

16. amount=amount+amt;

17. System.out.println(amt+" deposited");

18. }

19. //withdraw method

20. public void withdraw(float amt){

21. if(amount<amt){

22. System.out.println("Insufficient Balance");

23. }else{

24. amount=amount-amt;

25. System.out.println(amt+" withdrawn");

26. }

27. }

28. //method to check the balance of the account

29. public void checkBalance()

30. {System.out.println("Balance is: "+amount);}

31. //method to display the values of an object

32. void display(){System.out.println(acc_no+" "+name+" "+amount);}

33. }

34. //Creating a test class to deposit and withdraw amount

35. class TestAccount{

36. public static void main(String[] args){

37. Account a1=new Account();

38. a1.insert(832345,"Ali",1000);

39. a1.display();

40. a1.checkBalance();

AJ/Handout 13- 14 Object Oriented Programming using Java (ECS-122)

15

41. a1.deposit(40000);

42. a1.checkBalance();

43. a1.withdraw(15000);

44. a1.checkBalance();

45. }

46. }

Output:

Q#1: Modify the above bank example in a way that user (bank employee) can perform

following operations:

 Create new bank account (maximum five)

 Display account balance (based on account number)

 Display the name and amount of customer having maximum account balance (find max

amount among all account holders)

Note: Use the concepts discussed in lesson so far i.e, access modifiers, passing & returning

objects

832345 Ali 1000.0
Balance is: 1000.0

40000.0 deposited

Balance is: 41000.0

15000.0 withdrawn

Balance is: 26000.0

AJ/Handout 13- 14 Object Oriented Programming using Java (ECS-122)

16

Q#2: Consider we already created Employee Class as given in UML diagram. Create Employee

Management class which have an array 10 of Employees (Array of Employee must be a data

member). Create following functions as instructed:

1. InputAll: this will receive the values (first name, last name, salary) for each Employee

and assign to respective objects. ID should be assign incrementally starting from 100.

2. Display: this will ask user for employee ID and it will display the information of the

employee.

3. SortBySalary: this will sort the array in ascending order, based the value of the salary.

